struka(e):

čvrstoća, mehaničko svojstvo materijala da pruža otpor djelovanju sile. Materijali se sastoje od jednoga ili više kristala (monokristali, polikristali) ili su amorfni. Razaranje kristala nastaje zbog prekoračenja interatomskih ili intermolekularnih sila na dva načina: odvajanjem jednoga dijela od drugoga u ravnini okomitoj na smjer djelovanja sile ili posmikom, tj. međusobnim pomakom jednoga dijela kristala prema drugomu u kliznim ravninama kristala. Amorfni su materijali izotropni, nemaju izrazitih kliznih ravnina; razaranje nastaje odvajanjem jednoga dijela od drugoga ili posmikom, no na plohama koje u pravilu nisu ravne. Prema tim dvjema osnovnim vrstama razaranja razlikuje se vlačna ili rastezna čvrstoća i smična čvrstoća. U tehnici se kao čvrstoća materijala uzima omjer najveće vlačne sile ili posmika što ih tijelo može podnijeti i površine plohe presjeka. Vlačna čvrstoća eksperimentalno se utvrđuje statičkim vlačnim pokusom, koji se provodi na uređaju nazvanome kidalica. Vlačna je čvrstoća, prema tome, naprezanje pri najvećoj sili kod statičkoga vlačnog pokusa.

Ako je poznata atomska i molekularna struktura materijala, mogu se teoretski izračunati sile kojima su vezani atomi i molekule. Pokazalo se, međutim, da stvarna (tehnička) čvrstoća kristala iznosi tek stoti ili tisućiti dio teoretske čvrstoće. Ta se pojava tumači različitim pogrješkama u atomskoj ili molekularnoj strukturi kristala, a i u amorfnoj masi (nepravilnosti u strukturi kristala, dislokacije, šupljine; → defekti čvrstog stanja).

Tehnički materijali najčešće su polikristalni ili amorfni, no kod nekih je materijala struktura složenija, zbog čega je i izgled prijelomne površine drugačiji nego kod monokristala.

Vlačna čvrstoća nekih tehničkih materijala

Materijal Rm (MPa) Materijal Rm (MPa)
meki čelik 300–600 beton* 9–30
legirani čelik 500–3000 staklo 30–90
Al‑tehnički čisti 90–170 polietilen 10–20
Al‑slitine 90–600 poliamid 45–80
Cu‑tehnički čisti 200–350 staklom ojačana poliesterska smola 200–300
Cu‑slitine 180–750 staklom ojačana epoksidna smola 1300–1700
sivi lijev 100–350 politetrafluoretilen 5–25

*tlačna čvrstoća

Plastični (npr. olovo) i elastoplastični materijali (npr. meki čelici, aluminij, guma) nemaju određene tlačne čvrstoće, jer se mogu gotovo neograničeno deformirati. Krhki se materijali pri pritisku razaraju ugl. zbog prekoračenja smične čvrstoće. Tlačna čvrstoća krhkih materijala (lijevanoga željeza, stakla, kamena) znatno je veća od vlačne čvrstoće; to se tumači većom osjetljivošću krhkih materijala na pogrješke u strukturi, koje se više očituju kod vlačnog naprezanja. Čvrstoća materijala i konstrukcije ovisi o više čimbenika. Iako se iz vlačne i smične čvrstoće može teoretski proračunati i čvrstoća pojedinih dijelova konstrukcija napregnutih na neki drugi način, ipak se tako proračunane vrijednosti manje ili više razlikuju od stvarnih čvrstoća. Veličina tog neslaganja ovisi o tome u kojoj se mjeri pretpostavke o svojstvima materijala (elastičnost, plastičnost, izotropnost, homogenost) poklapaju s njegovim stvarnim svojstvima. Kod jednostavnih načina naprezanja (savijanje, tlak, torzija ili uvijanje) ravnih štapova od homogenog i elastičnog materijala, proračunane čvrstoće vrlo malo odstupaju od stvarnih. Kod složenijih načina naprezanja (mjestimični tlak) dijelova konstrukcija složenijeg oblika (npr. kućišta motora s unutarnjim izgaranjem) izrađenih od heterogenih materijala, proračun čvrstoće matematički je vrlo složen i neslaganje je između proračunanih i stvarnih čvrstoća veliko. U takvim se slučajevima čvrstoća ispituje empirijski na prototipovima ili na modelima.

Čvrstoća materijala ovisi o tome je li tijelo napregnuto samo u jednom smjeru ili u nekoliko njih. Ispitivanja su pokazala da je čvrstoća tijela napregnuta istovrsnim silama u nekoliko smjerova veća od čvrstoće tijela napregnute samo u jednom smjeru. Kako bi se olakšao proračun čvrstoće pojedinih dijelova napregnutih u više smjerova (složena čvrstoća, npr. stijenke kotla pod pritiskom), postavljene su tzv. teorije čvrstoće (Rankine, Saint-Venant, Guest, Tresca, Mohr, Haigh Mises-Hencky), koje daju omjere čvrstoćâ nekog materijala kod naprezanja u jednom smjeru ili u više međusobno okomitih smjerova. Ta se teorija primjenjuje s manje ili više uspjeha u proračunima čvrstoća konstrukcija. Pokusi su osim toga pokazali da se mnogi krhki materijali pri naprezanju u nekoliko smjerova vladaju kao plastični, tj. da ih je prije razaranja moguće u znatnoj mjeri deformirati.

Na čvrstoću utječe brzina prirasta naprezanja. Čvrstoća materijala pri polaganom povećanju naprezanja (statička vlačna čvrstoća) obično je manja od čvrstoće pri nagloj promjeni naprezanja (dinamička čvrstoća). S porastom temperature statička vlačna čvrstoća konstrukcijskih materijala opada, a to je čest uzrok rušenja konstrukcija u požaru. Dinamička čvrstoća smanjuje se kod sniženih temperatura, tako da je dinamička čvrstoća metala i velikog dijela ostalih konstrukcijskih materijala najveća kod temperatura 0 do 400 °C.

Čvrstoća metala znatno ovisi i o toplinskoj obradbi (kaljenje, popuštanje).

Vlažnost smanjuje čvrstoću šupljikavih materijala, što se tumači smanjenjem kapilarnih sila. Kapilarne sile učvršćuju šupljikava tijela (npr. potpuno suh ili potpuno mokar pijesak nema nikakve čvrstoće, a kod vlažnog pijeska kapilarne sile drže zrna pijeska zajedno).

Osobito je važno smanjenje čvrstoće materijala pri promjenljivome dinamičkom naprezanju. Pokazalo se naime da se dijelovi konstrukcija, koji su napregnuti periodički promjenljivim naprezanjem, lome nakon određenoga broja promjena naprezanja i kod naprezanja koje je manje od statičke čvrstoće. Ta se pojava zove umor materijala. Takvi su lomovi vrlo nezgodni jer nastaju bez lako uočljivih znakova iscrpljenosti materijala. Čvrstoća materijala smanjuje se s brojem promjena naprezanja, a ovisi i o granicama unutar kojih se naprezanje mijenja. Kod izmjeničnog naprezanja (jednako velik vlak i tlak) čvrstoća je manja nego kod jednosmjernog naprezanja. Naprezanje kod kojega materijal može izdržati neograničeno velik broj promjena naziva se dinamička izdržljivost materijala. U praksi se materijali dinamički ispituju na umornost do 10 mil. promjena. Kod većine konstrukcijskih materijala dinamička izdržljivost iznosi 20 do 60% statičke čvrstoće. Izgled prijelomnoga mjesta zbog umora drugačiji je od onoga zbog prekoračenja statičke čvrstoće.

Nagle promjene oblika tijela, izbočine, utori, zarezi, neravnine na površini smanjuju statičku vlačnu čvrstoću materijala i dinamičku izdržljivost. Na takvim mjestima nastaje koncentracija naprezanja.

Dijelovi konstrukcije uvijek se dimenzioniraju tako da najveće dopušteno naprezanje u konstrukciji zbog najnepovoljnijega zajedničkog djelovanja svih mogućih naprezanja (vlastita težina, ljudi, strojevi, vozila, snijeg, vjetar) iznosi tek jedan dio nominalnog naprezanja. Omjer između nominalnog i najvećega dopuštenog naprezanja u konstrukciji naziva se koeficijentom sigurnosti, a njegov izbor ovisi o vrsti materijala, načinu naprezanja (vlak, tlak), vrsti naprezanja (dinamičko, statičko) te o namjeni konstrukcije (stalna ili privremena naprezanja). Koeficijent sigurnosti obično je 2 do 10.

Osim navedenih načina naprezanja (vlak, tlak, posmik, savijanje i uvijanje), kod kojih razaranje nastaje zbog prekoračenja čvrstoće materijala, u tehnici su također važne neke druge pojave zbog kojih se može srušiti konstrukcija. Postoje problemi stabilnosti, od kojih su najvažniji izvijanje i izbočenje. Izvijanje je pojava da vitak štap pod djelovanjem sile određene veličine, koja ga pritišće u smjeru njegove osi, dobiva zakrivljen oblik. Daljnje povećanje sile, makar bilo maleno, lomi štap zbog zajedničkog djelovanja tlaka i savijanja. Sila kod koje se štap izvine naziva se kritičnom silom. Njezina veličina, međutim, ne ovisi samo o čvrstoći materijala nego i o njegovim elastičnim i plastičnim svojstvima te o izmjerama štapa, pa se ona može s priličnom točnošću izračunati ako su spomenuta svojstva poznata. Proračun centrično pritisnutih štapova kod kojih postoji opasnost izvijanja može se svesti na proračun čvrstoće, jer je poznata kritična sila, a poznata je i površina presjeka štapa, pa se odatle može izračunati i kritično naprezanje. Koeficijent sigurnosti u tom je slučaju omjer kritičnog naprezanja i stvarnog naprezanja štapa. Slična je pojava izbočenje tankih limova.

Citiranje:

čvrstoća. Hrvatska enciklopedija, mrežno izdanje. Leksikografski zavod Miroslav Krleža, 2013 – 2024. Pristupljeno 28.3.2024. <https://www.enciklopedija.hr/clanak/cvrstoca>.