algebarska teorija brojeva

algebarska teorija brojeva, dio teorije brojeva kojoj je osnovna zadaća proučavanje aritmetičkih svojstava cijelih brojeva polja K algebarskih brojeva konačnog stupnja n nad poljem Q racionalnih brojeva. Svi se ti cijeli brojevi mogu dobiti s pomoću osnovne baze (ω1, ω2, … ωn) ako u linearnom obliku x1ω+ xω+ … + xnωn svaki dobiva vrijednosti svih cijelih racionalnih brojeva.

Prijelaz od cijelih racionalnih brojeva k cijelim algebarskim brojevima nije moguć na temelju analogije: polje racionalnih brojeva ima dvije jedinice (–1 i +1) dok opća polja algebarskih brojeva mogu sadržavati i beskonačno mnogo jedinica. Drugo narušavanje analogije nastaje kod rastavljanja cijelih racionalnih brojeva u na proste faktore, gdje vrijedi u = p1a1 · p2a² · … · pkak.

Kod algebarskih brojeva nije tako. Ako je zadano polje Q ( −5 ), u njemu je broj 6 moguće rastaviti na dva načina:

6 = 2 · 3 i 6 = (1 + −5 ) (1 + −5 )

Treće je narušavanje analogije opstojnost prostih brojeva. Tako je prosti broj 5, ako je zadano polje Q ( −1 ), moguće rastaviti na dva faktora: 5 = (2 + −1 ) (2 − −1 ).

Četvrti je problem opća struktura polja algebarskih brojeva. Ta su četiri problema predmet proučavanja algebarske teorije brojeva.

algebarska teorija brojeva. Hrvatska enciklopedija, mrežno izdanje. Leksikografski zavod Miroslav Krleža, 2018. Pristupljeno 29.1.2020. <http://www.enciklopedija.hr/Natuknica.aspx?ID=1696>.