struka(e): matematika

binomni koeficijent (znak \(\tbinom n k\), čita se: n povrh k), broj načina na koji se iz skupa od n elemenata može odabrati podskup od k elemenata, tj. pozitivni cijeli broj koji je jednak

\[\tbinom n k=\frac{n!}{k!\,(n-k)!},\]

gdje je n prirodni broj, a k je nenegativni cijeli broj koji je jednak ili manji od n. Primjerice,

\[\tbinom {10}7=\frac{10!}{7!\,(10-7)!}=\frac{1\cdot2\cdot3\cdot4\cdot5\cdot6\cdot7\cdot8\cdot9\cdot10}{1\cdot2\cdot3\cdot4\cdot5\cdot6\cdot7\cdot1\cdot2\cdot3}=120.\]

Pojavljuje se kao koeficijent u binomnome poučku.

Svojstva binomnih koeficijenata

Svojstva binomnih koeficijenata: 1. postoji samo jedan podskup bez ijednog elementa i samo jedan podskup sadrži sve elemente

\[\tbinom n 0=\tbinom n n=1,\]

2. svojstvo simetrije

\[\tbinom n k=\tbinom n {n-k},\]

3. Pascalova formula

\[\tbinom n k=\frac{n!}{k!\,(n-k)!},\]

4. eksplicitna formula

\[\tbinom nk=\frac nk\cdot\frac{n-1}{k-1}\cdot\,\cdots\,\cdot\frac{n-k+1}1=\frac{n(n-1)\cdot\,\cdots\,\cdot(n-k+1,)}{k!}=\frac{n!}{k!\,(n-k)!},\]

5. zbroj binomnih koeficijenata

\[\tbinom kk+\tbinom{k+1}k+\cdots+\tbinom nk=\tbinom{n+1}{k+1},\]

\[\tbinom k0+\tbinom{k+1}1+\tbinom{k+2}2+\cdots+\tbinom{k+n}n=\tbinom{n+k+1}n.\]

Citiranje:

binomni koeficijent. Hrvatska enciklopedija, mrežno izdanje. Leksikografski zavod Miroslav Krleža, 2013. – 2024. Pristupljeno 19.7.2024. <https://www.enciklopedija.hr/clanak/binomni-koeficijent>.