relativistička fizika

relativistička fizika, moderna fizičko-matematička teorija koja potpuno obuhvaća prirodne pojave na razini čestica (iznad kvantne razine koja je opisana Planckovom konstantom) do kozmoloških veličina (razine građe i evolucije svemira). Sadržaj relativističke fizike Einsteinova je relativnost primijenjena u svim granama fizike, koja je zasnovana na postulatima specijalne teorije relativnosti (1905) i tenzorske teorije gravitacijskog polja u općoj teoriji relativnosti (1916), a njezino je uporište klasični princip relativnosti. Newtonova mehanika u nepromijenjenom obliku vrijedi u svim inercijskim sustavima (prostorima), tako da su inercijski sustavi u klasičnoj mehanici ekvivalentni. Prema Galileijevu načelu relativnosti stvar je fizikalne slobode (izbora) koji će sustav biti u mirovanju, a koji u jednolikom gibanju. Fizikalne veličine, jednadžbe gibanja i fizikalni zakoni u relativističkoj fizici moraju biti invarijantni na Lorentzove transformacije. To slijedi iz Einsteinovih postulata: 1) brzina svjetlosti c u vakuumu jednaka je u svim sustavima što se jedni prema drugima jednoliko gibaju; 2) u svim sustavima što se jedni prema drugima jednoliko gibaju vrijede isti zakoni prirode. Prvi postulat – o stalnosti brzine svjetlosti u svim sustavima neovisno o brzini promatrača – podrazumijeva se kao aksiom elektrodinamike, a drugi je postulat fundamentalni zahtjev kovarijantnosti fizikalnih zakona prirode. Granice točnosti i primjenljivosti klasične fizike fenomenološki su opisane dvjema prirodnim konstantama, brzinom svjetlosti c = 299 792 458 m/s (točna veličina, bez mjerne nesigurnosti), gornja granica brzine za bilo koju tvarnu česticu i najveća brzina kojom se energija, međudjelovanje ili informacija prenosi u realnim fizičkim prostorima, i Planckovom konstantom h = 6,6260755 ∙ 10–34 Js, fundamentalnim kvantom djelovanja u fizici. Ako u nekom fizičkom sustavu neka njegova veličina, koja se dimenzijski podudara s Planckovom konstantom, ima vrijednost reda veličine Planckove konstante, sustav se tada mora promatrati kvantnomehanički. Na temelju tih dvaju postulata Einstein je dobio jednadžbe identične Lorentzovim jednadžbama. Iz dobivenih jednadžbi izveo je Lorentzovu kontrakciju dužina i tzv. dilataciju vremena, tj. rezultat da sat u gibanju ide polaganije ako ga usporedimo sa satovima sustava u kojem mjerimo. U sustavu koji se giba brzinom v sat će ići sporije (t) od isto takva sata (t0) u sustavu koji miruje. Taj se efekt naziva relativistička dilatacija vremena: relativistička fizika 1.jpg. Druga je posljedica Lorentzovih transformacija kontrakcija dužine u smjeru gibanja. Njezina duljina l u sustavu mirovanja mjeri se kraćom od one vlastite l0 u sustavu koji se giba brzinom v, po formuli: relativistička fizika 2.jpg. Dimenzije nekoga tijela ne mogu se isto tako apsolutno odrediti kao ni vrijeme, jer i one ovise o stanju opažača. Einstein je izveo i teorem adicije brzina, kojim pokazuje da superpozicijom dviju brzina manjih od brzine svjetlosti opet izlazi brzina manja od brzine svjetlosti makar svaka od njih prelazi polovicu brzine svjetlosti. Dok su u Lorentza transformirane koordinate samo pomoćne varijable, u Einsteina su to prave fizičke veličine. Lorentzovo lokalno vrijeme, koje on razlikuje od pravoga vremena, u Einsteina postaje vrijeme dotičnoga sustava i ravnopravno je s vremenskim podatcima bilo kojega drugog sustava. Preračunavanje takvih podataka iz sustava u sustav sadržano je u jednadžbama transformacije. Time je karakteriziran možda najveći misaoni korak koji je učinio Einstein. Odbacio je koncepciju Newtonova apsolutnoga vremena označenu riječima: »Apsolutno, istinsko i matematičko vrijeme teče jednoliko po sebi i po svojoj prirodi i bez odnosa spram bilo čega izvanjskoga, a drugim se imenom zove trajanje«. Jedan je od najdubljih rezultata Einsteinove pronicave analize spoznaja da istodobnost dvaju prostorno udaljenih događaja nije apsolutna činjenica, već da ovisi o tome u kojem se koordinatnom sustavu ti događaji promatraju. Einstein je jednostavnom argumentacijom zaključio da se masa tijela mijenja ako mu se promijeni energija, i to tako da je promjena mase jednaka promjeni energije podijeljenoj s kvadratom brzine svjetlosti. On je to izrijekom protegnuo na sve vrste energije, premda je operirao samo s energijom zračenja. Tu ekvivalenciju između mase i energije Einstein je izrazio riječima: »Masa tijela mjera je za njegov iznos energije«. Taj rezultat nije drugo doli znamenita relacija E = m c², koja je postala fundamentalna u nuklearnoj fizici i astrofizici. S pomoću nje fizičari su stekli nove spoznaje o strukturi materije i o prirodi energije koja dolazi od Sunca i zvijezda te o tome kako da se golema energija sadržana u jezgrama atoma iskoristi u korisne, ali i, nažalost, u ratne svrhe. Daljnji razvoj specijalne teorije relativnosti zajedničko je djelo Einsteina i drugih fizičara. Bitan formalno-matematički napredak donio je H. Minkowski. On je Lorentzove transformacije shvaćao kao transformacije u četverodimenzionalnom prostoru, koje ostavljaju kao invarijantnu jednu realnu hiperplohu 2. reda. Usto je uveo novu veličinu za određivanje vremena (u obliku w = ict) kao četvrtu koordinatu i time prešao na euklidsku metriku u četverodimenzionalnom prostoru, pri čem Lorentzove transformacije dobivaju značenje imaginarnih vrtnji. Na tu je mogućnost upozorio već J. H. Poincaré u svojem radu iz 1906.

Na temeljima specijalne teorije relativnosti razvijena je relativistička mehanika, relativističke relacije za energiju E i količinu gibanja p čestice: relativistička fizika 3.jpg, za ukupnu količinu gibanja čestice, i relativistička fizika 4.jpg, za količinu gibanja, gdje su m0 masa mirovanja neke čestice, v njezina brzina i m0c2 energija mirovanja čestice. Povezivanjem ovih dviju relacija dobiva se temeljna relacija relativističke fizike: E² = p²c² + m0²c4 = p²c² + E0², gdje je E ukupna relativistička energija, p relativistička količina gibanja, a E0 = m0c² energijski izražena masa mirovanja čestice. Kada su relativne brzine čestica v male prema brzini svjetlosti c, relativistička mehanika prelazi u običnu, Newtonovu mehaniku. Tako npr. relativistička ukupna energija neke čestice u graničnom slučaju, kada je v << c, prelazi razvojem navedene formule u red po potencijama veličine v/c u: E = m0c² + m0v²/2 = E0 + Ekin, dok se ostali članovi mogu zanemariti. Drugi član s desne strane klasični je oblik kinetičke energije čestice mase m0 i brzine v, dok je prvi član posljedica relativističke mehanike koji odgovara energiji mirovanja E0. Relativistička mehanika revidirala je i neke temeljne pojmove iz termodinamike. Premda su entropija i tlak u jednom sustavu neovisni o brzini gibanja toga sustava, temperatura, koja izražava srednju kinetičku energiju sustava, ovisi o brzini promatrača. Hrvatski matematičar i fizičar D. Blanuša izveo je 1947. transformacijske formule za količinu topline i temperaturu, koje su bile drukčije od onih što su ih 1907. izveli M. Planck i A. Einstein: Q = Q0/α i T = T0/α, gdje je relativistička fizika 5.jpg, Q0 i T0, odnosno Q i T su, redom, toplina i temperatura u sustavu u mirovanju, odnosno u gibajućem sustavu.

Specijalna teorija relativnosti promatra samo idealne sustave u relativnom jednolikom gibanju. Poopćenje te teorije na sustave koji mogu biti proizvoljno ubrzani jedan u odnosu prema drugomu, predstavlja bit opće teorije relativnosti. Polazeći od principa ekvivalencije, Einstein je želio princip relativnosti protegnuti na sve koordinatne sustave, a ne samo na inercijske. Stoga je promatrao i neinercijske sustave, pa gravitaciju karakterizira s deset koeficijenata diferencijalne kvadratne forme, koja označava linijski element u takvu općem prostorno-vremenskom sustavu. To razdoblje Einsteinova rada, od 1912. do 1914., posebno je plodno jer je u suradnji s matematičarom M. Grossmannom u novu teoriju uklopio diferencijalnu geometriju i druge velike matematičke strukture nastale u XIX. stoljeću. Gravitacija se može jednostavno objasniti zakrivljenošću prostorno-vremenskoga kontinuuma. Metrikom takva prostora određeni su gravitacijski potencijali bez obzira na to jesu li »realni« ili »fiktivni«. Einstein je također pokazao da se bilo koja materijalna točka kreće po geodetskim linijama, koje matematički predstavljaju najkraći mogući put između dviju svj. točaka. Kako je metrika prostora određena masama i njihovim rasporedom, to su geodetske linije zavisne od masa. Zakrivljenost staza planeta u njihovu trodimenzionalnom gibanju oko Sunca svojstvena je prema tomu samo četverodimenzionalnom prostorno-vremenskomu kontinuumu, a nije posljedica postojanja stvarnih gravitacijskih sila. Povijest bilo koje čestice u svemiru u potpunosti je opisana svj. linijom u četverodimenzionalnom prostoru–vremenu. Gledano s matematičkoga aspekta, specijalna teorija relativnosti razmatra ravni, nezakrivljeni prostor Minkowskoga, čemu odgovara svijet u kojem nije zastupljeno gravitacijsko polje. Uvođenjem zakrivljenoga četverodimenzionalnoga prostorno-vremenskoga kontinuuma, Einstein je pokazao da su Newtonovi zakoni gravitacije sadržani kao aproksimacija u osnovnim jednadžbama polja. Da bi se u Newtonovo vrijeme objasnili osnovni zakoni gravitacije, bilo je nužno uvesti pojam sile, koji je u biti izmišljen, umjetno stvoren, kao objašnjenje uzroka gibanja, odnosno poticaja na gibanje. Einsteinovo rješenje toga stoljetnog problema logična je posljedica produbljenije analize prirode i prirodnih pojava. U Einsteinovoj teoriji gravitacija je svedena na geometrijska svojstva prostorno-vremenskoga kontinuuma. Svi su koordinatni sustavi ravnopravni, ali se pri prijelazu na sustave koji su ubrzani prema sveukupnosti svemirskih masa pojavljuju polja gravitacije. Tako je Einstein uspio tromost tijela i silu gravitacije svesti na zajednički uzrok: na svemirske mase. Centrifugalne sile u sustavu koji rotira nisu uzrokovane time što sustav rotira prema apsolutnomu prostoru, kako je mislio Newton, nego time što rotira prema svemirskim masama. Budući da je u općoj teoriji relativnosti gravitacija svedena na geometrijska svojstva prostorno-vremenskoga kontinuuma, idući korak usavršavanja bila je, prirodno, ideja da se i elektromagnetsko polje svede na geometrijska svojstva. Zanimljivo je da je već D. Hilbert, ponesen Einsteinovim radom na teoriji relativnosti, pokušao 1915. i 1916. stvoriti jedinstvenu teoriju polja. Osim Einsteina, i mnogi su drugi znanstvenici pokušali izgraditi jedinstvenu teoriju polja. Ti matematički zanimljivi pokušaji nisu, međutim, dali zadovoljavajući rezultat. Opća teorija relativnosti bitno zahvaća u pitanje konstrukcije i razvoja cijeloga svemira, u kozmologiju. S obzirom na mogućnosti neeuklidske metrike, postoje različiti modeli svemira koji su u skladu s teorijom relativnosti. Eksperimentalne potvrde teorije relativnosti, s povećavanjem točnosti mjerenja i evolucijom mjerne tehnike, neprestano se povećavaju od vremena postavljanja teorije do danas i sve uvjerljivije svjedoče o ispravnosti teorije. Glavne su eksperimentalne potvrde:

1) Relativističko pomicanje perihela planeta, koje je posebno uočljivo kod Merkura, Venere, Zemlje, i planetoida Icarusa. Npr., izračunano pomicanje perihela Merkura iznosi 43,03 lučne sekunde u stoljeću, dok mjerenja daju 43,11 ± 0,45 lučnih sekunda kao razliku između mjerenja i utjecaja smetnji drugih planeta.

2) Gravitacijski Dopplerov učinak, tj. pomak spektralnih linija svjetlosti, koja dolazi iz jakih gravitacijskih polja, prema crvenomu kraju spektra. Učinak se opaža kod Sunca, nekih dvostrukih zvijezda, bijelih patuljaka, a mjeri se na Zemlji s pomoću Mössbauerova efekta. Postignute točnosti mjerenja iznose do 1% odstupanja od izračunanih.

3) Otklon zrake svjetlosti u gravitacijskom polju Sunca. Zraka koja prolazi neposredno kraj Sunca otklanja se, po teoriji relativnosti, za 1,75 lučnih sekunda. To je bila prva potvrda teorije; god. 1919. izmjeren je, pri potpunoj pomrčini Sunca, otklon zraka svjetlosti od 1,64 lučne sekunde.

4) Zakašnjenje radarske jeke. Radarski signal odaslan prema Merkuru i reflektiran natrag prolazi kraj Sunca te stoga, zbog utjecaja Sunca, putuje 0,24 ms dulje. Mjerenja daju rezultate do točnosti od 5% u odnosu na proračun.

5) Gravitacijski valovi, tj. oscilacije zakrivljenosti prostora –vremena koje, prema Einsteinovoj općoj teoriji relativnosti, nose energiju i impuls, rasprostirući se brzinom svjetlosti. Dok elektromagnetski valovi općenito međudjeluju s električnim nabojem i strujama, gravitacijski valovi međudjeluju s materijom općenito. Do danas još nije uspješno izvršeno točno mjerenje.

6) Mjerenje tzv. Lense-Thirringove i de Sitterove precesije zvrka u stazi oko Zemlje kao krucijalni test Einsteinove opće teorije relativnosti, lansiranjem gravitacijske satelitske sonde B (Stanford’s and NASA Gravity Probe B) 20. travnja 2004. u stazu oko Zemlje, na visini 640 km iznad polova. U vrtnji zvrka koji se giba po stazi oko Zemlje mogu se stvarno opažati njegove geodetske precesije u gravitacijskome polju Zemlje, kojega bi mjerenje predstavljalo još jednu vrlo finu provjeru Einsteinove teorije relativnosti. Ta sonda sakuplja baš podatke o srednjoj kutnoj precesiji zvrka i učinku uvijanja njegova lokalnog inercijskog sustava. Očekuje se da će ona izmjeriti (testirati) 6,614 lučnih sekunda u godini za geodetski efekt zakreta zvrka, te 0,0409 lučnih sekunda u godini za učinak uvijanja inercijskoga sustava zvrka. U projektu se koristi najsavršenija satelitska i astronomska tehnologija, te specijalni zvrk konstruiran tehnikama moderne nanotehnologije i supravodičke tehnologije. Zvrk čine 4 kuglice promjera 3,8 cm iz taljenoga kremena s vanjskom košuljicom od sloja niobija debljine 1,27 μm. Ukapljeni helij iz Dewarova spremnika drži niobijeve obloge kuglica na 1,8 K da bi se sićušnim magnetskim poljem definirali vrškovi osi rotirajuće kuglice. Kuglice se vrte frekvencijom od 10 000 okretaja/min, a od vanjskih magnetskih smetnji u toj vrtnji zaštićene su štitom koji prigušuje vanjske magnetske utjecaje 1012 puta. Referentna orijentacija vrtnje kuglica (smjer vrtnje u lokalnom inercijskom sustavu zvrka) računalno se namješta i kontrolira s pomoću maloga teleskopa na sondi, prema udaljenoj zvijezdi IM Peg. Cijelo zviježđe Pegaza ima ulogu relativno udaljenoga kopernikanskog sustava »zvijezda stajaćica«, za umjeravanje i kontrolu zvrka na sondi. Zvrk je savršeno tehnološki napravljen, a njegovo okruženje precizno umjereno, tako da se iz signala koji se očitavaju mogu opažati pomaci kutnoga momenta količine gibanja zvrka do osjetljivosti manje od 0,04 lučnih sekunda u godini. Pozitivni rezultat toga pokusa bio bi konačna potvrda Einsteinove teorije relativnosti (gravitacije), dok bi nulti rezultat pokusa (izostanak efekta) doveo do toga da valja činiti nove teorijske korake.

relativistička fizika. Hrvatska enciklopedija, mrežno izdanje. Leksikografski zavod Miroslav Krleža, 2018. Pristupljeno 13.12.2018. <http://www.enciklopedija.hr/Natuknica.aspx?ID=52373>.