struka(e): tiskarstvo | matematika | likovne umjetnosti
ilustracija
ZLATNI REZ, T asimptotska točka spirale

zlatni rez (božanski omjer, latinski sectio aurea) (znak φ).

1. U matematici, iracionalni broj koji se dobije kao omjer dvaju dijelova neke dužine kad se cijela dužina odnosi prema većemu dijelu kao što se veći dio odnosi prema manjemu: a + ba = ab, gdje je a veća, a b manja duljina dužine. Iznosi φ =  5  + 12 ≈ 1, 618 033 988 749 894 848… Često se za zlatni rez ne uzima njegova točna vrijednost nego približna, zbog praktičnih razloga. Kao prva aproksimacija uzima se omjer 8 : 5 = 1,6.

Omjer susjednih članova Fibonaccijeva niza (1, 1, 2, 3, 5, 8, 13, 21, 34, …) odgovara približnoj vrijednosti zlatnoga reza, to je bliže točnoj vrijednosti što su članovi niza veći.

Za zlatni rez vrijedi jednadžba 1 + 1φ = φ, odakle slijedi φ2 = φ + 1 i 1φ = φ – 1, drugim riječima kvadrira se tako da mu se doda broj 1, a recipročna mu se vrijednost dobije tako da mu se oduzme broj 1. Više potencije dobivaju se dodavanjem φ, dakle: φ³ = 2φ + 1; φ4 = 3 φ + 1… Zlatnim rezom bavili su se Pitagora i Euklid, u vezi s konstrukcijom dodekaedra i ikosaedra, a na prijelazu XV. u XVI. st. Luca Pacioli.

Zlatni pravokutnik pravokutnik je kojemu je omjer duljina stranica zlatni rez, može se podijeliti na kvadrat i manji pravokutnik koji je sličan velikomu, pa se postupak može beskonačno ponavljati, što se rabi npr. za formate papira.

Zlatna spirala (jednakokutna spirala) logaritamska je spirala za koju vrijedi da bilo koja njezina tangenta s polumjerom spirale zatvara isti kut. Moguće ju je nacrtati kroz uzastopne vrhove niza zlatnih pravokutnika koji se nalaze jedan unutar drugoga, a teži prema točki (omotava se oko točke) u kojoj se sijeku dijagonale pravokutnika.

Zlatni trokut može biti oštri jednakokračni trokut kojemu je omjer duljine kraka i duljine osnovice jednak zlatnomu rezu (vršni kut je 36°, a kutovi uz osnovicu su 72°) ili tupi jednakokračni trokut kojemu je omjer duljine osnovice i duljine kraka jednak zlatnomu rezu (vršni kut je 108°, a kutovi uz osnovicu 36°). Deset oštrih zlatnih trokuta s vrhovima u jednoj točki čini pravilni deseterokut.

Zlatni peterokut pravilni je peterokut, omjer duljine njegove dijagonale i duljine stranice jednak je zlatnomu rezu.

2. U arhitekturi i umjetnosti zlatni rez nerijetko se smatrao idealnom proporcijom i poistovjećivao sa skladom. Prema nekim empirijskim estetičarima, u različitim predmetima (slikama, primijenjenoj umjetnosti, pa i ljudskom tijelu) zlatni rez uvjetuje svojim skladnim odnosima najsnažniji doživljaj ljepote. Ponajprije se upotrebljavao u antičkom graditeljstvu, renesansi i klasicizmu, najčešće kod projektiranja pročelja. U moderno doba njime se bavio francuski arhitekt Le Corbusier u svojem djelu Modulor (1951). U grafičkoj se tehnologiji odnosi među duljinama bridova stranica knjiga često zasnivaju na omjeru zlatnoga reza.

Citiranje:

zlatni rez. Hrvatska enciklopedija, mrežno izdanje. Leksikografski zavod Miroslav Krleža, 2013. – 2024. Pristupljeno 18.5.2024. <https://www.enciklopedija.hr/clanak/zlatni-rez>.